ar X iv : m at h / 06 01 65 8 v 2 [ m at h . O C ] 2 3 Ju n 20 06 FurtherResults onStrictLyapunovFunctions for RapidlyTime - VaryingNonlinear Systems ⋆
نویسندگان
چکیده
We explicitly construct global strict Lyapunov functions for rapidly time-varying nonlinear control systems. The Lyapunov functions we construct are expressed in terms of oftentimes more readily available Lyapunov functions for the limiting dynamics which we assume are uniformly globally asymptotically stable. This leads to new sufficient conditions for uniform global exponential, uniform global asymptotic, and input-to-state stability of fast time-varying dynamics. We also construct strict Lyapunov functions for our systems using a strictification approach. We illustrate our results using several examples.
منابع مشابه
ar X iv : m at h . O C / 0 60 16 58 v 2 2 3 Ju n 20 06 FurtherResults onStrictLyapunovFunctions for RapidlyTime - VaryingNonlinear Systems ⋆
We explicitly construct global strict Lyapunov functions for rapidly time-varying nonlinear control systems. The Lyapunov functions we construct are expressed in terms of oftentimes more readily available Lyapunov functions for the limiting dynamics which we assume are uniformly globally asymptotically stable. This leads to new sufficient conditions for uniform global exponential, uniform globa...
متن کامل2 6 Ja n 20 06 FurtherResults onStrictLyapunovFunctions for RapidlyTime - VaryingNonlinear Systems ⋆
We explicitly construct global strict Lyapunov functions for rapidly time-varying nonlinear control systems. The Lyapunov functions we construct are expressed in terms of oftentimes more readily available Lyapunov functions for the limiting dynamics which we assume are uniformly globally asymptotically stable. This leads to new sufficient conditions for uniform global exponential, uniform globa...
متن کاملar X iv : m at h / 06 06 67 1 v 1 [ m at h . A C ] 2 7 Ju n 20 06 PRÜFER ⋆ – MULTIPLICATION DOMAINS AND ⋆ – COHERENCE
متن کامل
ar X iv : m at h / 06 06 33 9 v 1 [ m at h . SP ] 1 4 Ju n 20 06 Eigenfunction expansions associated with 1 d periodic differential operators of order 2 n
We prove an explicit formula for the spectral expansions in L(R) generated by selfadjoint differential operators (−1) d dx2n + n−1
متن کاملar X iv : m at h / 06 06 31 2 v 1 [ m at h . A C ] 1 3 Ju n 20 06 ASYMPTOTIC BEHAVIOR OF MULTIGRADED REGULARITY
Let S be a standard N k-graded polynomial ring over a field K, let I be a multigraded homogeneous ideal of S, and let M be a finitely generated Z k-graded S-module. We prove that the resolution regularity, a multigraded variant of Castelnuovo-Mumford regularity, of I n M is asymptotically a linear function. This shows that the well known Z-graded phenomenon carries to multigraded situation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006